Urethane Coatings A division of Era Polymers Pty Ltd Chemwatch Hazard Alert Code: 3 Version No: 2.2 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Issue Date: 11/01/2022 Print Date: 11/01/2022 S.GHS.AUS.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | 1 Todas Identifici | | | |----------------------|---|--| | Product name | TIMBERCLEAN | | | Synonyms | Not Available | | | Proper shipping name | CORROSIVE LIQUID, N.O.S. (contains hydrochloric acid) | | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Product is used to clean timber and timber structures prior to the application of Urethane Coatings Decking Oil. #### Details of the supplier of the safety data sheet | Registered company name | Era Polymers Pty Ltd | | |-------------------------|--|--| | Address | 2 - 4 Green Street Banksmeadow NSW Australia | | | Telephone | +61 (0) 2 9666 3888 | | | Fax | +61 (0) 2 9666 4805 | | | Website | www.urethanecoatings.com.au | | | Email | sales@urethanecoatings.com.au | | # Emergency telephone number | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|------------------------------| | Emergency telephone numbers | +61 2 9186 1132 | | Other emergency telephone numbers | +61 1800 951 288 | Once connected and if the message is not in your prefered language then please dial 01 # **SECTION 2 Hazards identification** # Classification of the substance or mixture ${\color{blue} \textbf{HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.} \\$ | Poisons Schedule | S5 | |--------------------|---| | Classification [1] | Skin Corrosion/Irritation Category 1B, Corrosive to Metals Category 1, Serious Eye Damage/Eye Irritation Category 1 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | # Label elements Hazard pictogram(s) Signal word Danger # Hazard statement(s) | Trace of other months of | | |--------------------------|--| | H314 | Causes severe skin burns and eye damage. | | H290 | May be corrosive to metals. | Version No: 2.2 Page 2 of 11 Issue Date: 11/01/2022 # **TIMBERCLEAN** Print Date: 11/01/2022 | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | | P103 | Read carefully and follow all instructions. | # Precautionary statement(s) Prevention | P260 | Do not breathe mist/vapours/spray. | | |------|--|--| | P264 | P264 Wash all exposed external body areas thoroughly after handling. | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P234 | Keep only in original packaging. | | #### Precautionary statement(s) Response | P390
P304+P340 | Absorb spillage to prevent material damage. IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | |-------------------|--|--| | P363 | Wash contaminated clothing before reuse. | | | P310 | Immediately call a POISON CENTER/doctor/physician/first aider. | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P303+P361+P353 | ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | # Precautionary statement(s) Storage P405 Store locked up. # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### **Substances** See section below for composition of Mixtures # Mixtures | CAS No | %[weight] | Name | |---------------|---|--------------------------------------| | 144-62-7 | <10 | oxalic acid | | 7647-01-0 | <10 | hydrochloric acid | | Not Available | to 100 | All other substances - non-hazardous | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | # **SECTION 4 First aid measures** # D | Description of first aid measure | es | |----------------------------------|---| | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be | This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) Version No: 2.2 Page 3 of 11 Issue Date: 11/01/2022 #### **TIMBERCLEAN** Print Date: 11/01/2022 # Ingestion - For advice, contact a Poisons Information Centre or a doctor at once. - Urgent hospital treatment is likely to be needed. - If swallowed do **NOT** induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Transport to hospital or doctor without delay. #### Indication of any immediate medical attention and special treatment needed - ▶ Effective therapy against burns from oxalic acid involves replacement of calcium. - Intravenous oxalic acid is substantially excreted (88% 90%) in the urine within 36 hours. For acute or short term repeated exposures to strong acids: - Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially. - ▶ Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling - ▶ Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise. - Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific
tissues. INGESTION: - Immediate dilution (milk or water) within 30 minutes post ingestion is recommended. - ▶ DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury. - b Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult. - Charcoal has no place in acid management. - ▶ Some authors suggest the use of lavage within 1 hour of ingestion. #### SKIN: - ▶ Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping. - ▶ Deep second-degree burns may benefit from topical silver sulfadiazine. # ► D - Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required. - Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury. - ▶ Steroid eye drops should only be administered with the approval of a consulting ophthalmologist). [Ellenhorn and Barceloux: Medical Toxicology] # **SECTION 5 Firefighting measures** #### Extinguishing media - ▶ Foam - ► Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. - ► Water spray or fog Large fires only. # Special hazards arising from the substrate or mixture | Fire Incompatibility | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |----------------------|--| | | | # Advice for firefighters | Fire Fighting | Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | |---------------|---| | | ► Combustible. | ### Fire/Explosion Hazard ▶ Slight fire hazard when exposed to heat or flame. Alert Fire Brigade and tell them location and nature of hazard. - Acids may react with metals to produce hydrogen, a highly flammable and explosive gas. - Heating may cause expansion or decomposition leading to violent rupture of containers. May emit acrid smoke and corrosive fumes. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material HAZCHEM 2X #### **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Version No: 2.2 Issue Date: 11/01/2022 Page 4 of 11 Print Date: 11/01/2022 #### **TIMBERCLEAN** ▶ Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material Check regularly for spills and leaks. Clean up all spills immediately Minor Spills Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite Wipe up. Place in a suitable, labelled container for waste disposal. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Stop leak if safe to do so. **Major Spills** Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. ▶ Wash area and prevent runoff into drains. • After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** #### Precautions for safe handling Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Safe handling Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Other information Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## Conditions for safe storage, including any incompatibilities #### ▶ DO NOT use aluminium or galvanised containers Check regularly for spills and leaks Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. Packing as recommended by manufacturer. # For low viscosity materials - Check all containers are clearly labelled and free from leaks. Drums and jerricans must be of the non-removable head type. - ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - Removable head packaging; - Cans with friction closures and - ▶ low pressure tubes and cartridges # may be used. Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. # Oxalic acid (and its dihydrate): - react violently with strong oxidisers, bromine, furfuryl alcohol, hydrogen peroxide (90%), phosphorous trichloride, silver powders - reacts explosively with chlorites and hypochlorites - mixture with some silver compounds form explosive salts of silver oxalate - is incompatible with caustics and alkalis, urea, alkaline metals and steel #### attacks polyvinyl alcohol and acetal plastics Hydrogen chloride: # Storage incompatibility Suitable container - reacts strongly with strong oxidisers (releasing chlorine gas), acetic anhydride, caesium cyanotridecahydrodecaborate(2-), ethylidene difluoride, hexalithium disilicide, metal acetylide, sodium, silicon dioxide, tetraselenium tetranitride, and many organic materials - is incompatible with alkaline materials, acetic anhydride, acetylides, aliphatic amines, alkanolamines, alkylene oxides, aluminium, aluminium- Version No: 2.2 Page 5 of 11 Issue Date: 11/01/2022 #### **TIMBERCLEAN** Print Date: 11/01/2022 titanium alloys, aromatic amines, amines, amides, 2-aminoethanol, ammonia, ammonium hydroxide, borides, calcium phosphide, carbides, carbonates, cyanides, chlorosulfonic acid, ethylenediamine, ethyleneimine, epichlorohydrin, formaldehyde, isocyanates, metals, metal oxides, metal hydroxides, metal acetylides, metal carbides, oleum, organic anhydrides, potassium permanganate, perchloric acid, phosphides, 3-propiolactone, silicides, sulfites, sulfites, sulfuric acid, uranium phosphide, vinyl acetate, vinylidene fluoride - attacks most metals forming flammable hydrogen gas, and some plastics, rubbers and coatings - reacts with zinc, brass, galvanised iron, aluminium, copper and copper alloys - ▶ Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air. - Avoid strong bases - ▶ Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates. #### SECTION 8 Exposure controls / personal protection #### **Control parameters** # Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |------------------------------|-------------------|-------------------|---------------|---------------|-------------------|---------------| | Australia Exposure Standards | oxalic acid | Oxalic acid | 1 mg/m3 | 2 mg/m3 | Not Available | Not Available | | Australia
Exposure Standards | hydrochloric acid | Hydrogen chloride | Not Available | Not Available | 5 ppm / 7.5 mg/m3 | Not Available | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------|---------------|---------------|---------------| | oxalic acid | 2 mg/m3 | 20 mg/m3 | 500 mg/m3 | | hydrochloric acid | Not Available | Not Available | Not Available | | hydrochloric acid | 1.8 ppm | 22 ppm | 100 ppm | | Ingredient | Original IDLH | Revised IDLH | |-------------------|---------------|---------------| | oxalic acid | 500 mg/m3 | Not Available | | hydrochloric acid | 50 ppm | Not Available | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### **TIMBERCLEAN** Print Date: 11/01/2022 #### Personal protection Eye and face protection - Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure. - ▶ Chemical goggles whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted. - Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection. - Alternatively a gas mask may replace splash goggles and face shields. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] | Skin protection | See Hand protection below | |-----------------------|---| | Hands/feet protection | Elbow length PVC gloves When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. | | Body protection | See Other protection below | | Other protection | Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. | #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: **Forsberg Clothing Performance Index'.** The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: TIMBERCLEAN | Material | СРІ | |-------------------|-----| | BUTYL | A | | NEOPRENE | A | | NEOPRENE/NATURAL | A | | NITRILE | A | | NITRILE+PVC | A | | PVC | A | | NATURAL RUBBER | В | | NATURAL+NEOPRENE | В | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | PE/EVAL/PE | С | | SARANEX-23 | С | | VITON | С | | VITON/NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion $\ensuremath{\mathsf{C}}\xspace$ Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. # Respiratory protection Type AB-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AB-AUS P2 | - | AB-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AB-AUS / Class
1 P2 | - | | up to 100 x ES | - | AB-2 P2 | AB-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) 76ab-p() # **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties Appearance Light blue transparent liquid Version No: 2.2 Page 7 of 11 Issue Date: 11/01/2022 Print Date: 11/01/2022 #### **TIMBERCLEAN** | Physical state | Liquid | Relative density (Water = 1) | Not Available | |--|------------------------|---|---------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as
supplied) | <7 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 100 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available BuAC = 1 | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|---| | Chemical stability | Contact with alkaline material liberates heat Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** ## Information on toxicological effects The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Inhalation of oxalic acid dusts or vapours can cause ulceration of the linings of the nose and throat, nosebleed, headache and nervousness. The airborne dust behaves as a strong acid producing severe local burns of the linings of the nose and throat. The material has NOT been classified by EC Directives or other classification systems as 'harmful by inhalation'. This is because of the lack of The material has **NOT** been classified by EC Directives or other classification systems as 'harmful by inhalation'. This is because of the lack of corroborating animal or human evidence. Hydrogen chloride (HCl) vapour or fumes present a hazard from a single acute exposure. Exposures of 1300 to 2000 ppm have been lethal to humans in a few minutes. Inhalation of HCl may cause choking, coughing, burning sensation and may cause ulceration of the nose, throat and larynx. Fluid on the lungs Inhalation of HCI may cause choking, coughing, burning sensation and may cause ulceration of the nose, throat and larynx. Fluid on the lung followed by generalised lung damage may follow. Breathing of HCl vapour may aggravate asthma and inflammatory or fibrotic pulmonary disease. High concentrations cause necrosis of the tracheal and bronchial epithelium, pulmonary oedema, atelectasis and emphysema and damage to the pulmonary blood vessels and liver. # Ingestion Inhaled Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oxalic acid is a minor, normal body constituent occurring in blood, kidney, muscle and liver at very low concentrations. Higher concentrations are toxic. Ingestion of 5 grams has caused death within hours. It is a poison which affects the central nervous system and kidney function. Low doses may cause low blood calcium concentration. The material has **NOT** been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. # Skin Contact Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Solutions of 5% to 10% oxalic acid are irritating to the skin after prolonged contact; early gangrene may occur after hand immersion in oxalate solutions Open cuts, abraded or irritated skin should not be exposed to this material Version No: 2.2 Page 8 of 11 Issue Date: 11/01/2022 #### **TIMBERCLEAN** Print Date: 11/01/2022 Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly If applied to the eyes, this material causes severe eye damage Irritation of the eyes may produce a heavy secretion of tears (lachrymation). # Chronic Eve Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Chronic minor exposure to hydrogen chloride (HCI) vapour or fume may cause discolouration or erosion of the teeth, bleeding of the nose and gums; and ulceration of the mucous membranes of the nose. Workers exposed to hydrochloric acid suffered from stomach inflammation and a number of cases of chronic bronchitis (airway inflammation) have also been reported. Repeated or prolonged exposure to dilute solutions of hydrogen chloride may cause skin inflammation. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. # **TIMBERCLEAN** | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | # oxalic acid | TOXICITY | IRRITATION | |---|--| | Dermal (rabbit) LD50: 2000 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | Oral (Rat) LD50; 475 mg/kg ^[2] | Skin: no adverse effect observed (not irritating) ^[1] | # hydrochloric acid | TOXICITY | IRRITATION | |--|---| | dermal (mouse) LD50: 1449 mg/kg ^[2] | Eye (rabbit): 5mg/30s - mild | | Oral (Rat) LD50; 900 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | Skin: adverse effect observed (corrosive) ^[1] | | | Skin: adverse effect observed (irritating) ^[1] | #### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances # HYDROCHLORIC ACID No significant acute toxicological data identified in literature search. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing #### TIMBERCLEAN & OXALIC **ACID & HYDROCHLORIC** ACID Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. #### **TIMBERCLEAN &** HYDROCHLORIC ACID For acid mists, aerosols, vapours Test results suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airway from direct exposure to inhaled acidic mists (which also protects the stomach lining from the hydrochloric acid secreted there). | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × |
Aspiration Hazard | x | Leaend: X - Data either not available or does not fill the criteria for classification Data available to make classification # **SECTION 12 Ecological information** #### Toxicity | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------|--------------------|---------------|---------------|---------------| | Not Available | Version No: **2.2** Page **9** of **11** Issue Date: **11/01/2022** #### **TIMBERCLEAN** Print Date: 11/01/2022 | oxa | lic | ac | id | |-----|-----|----|----| | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------|--------------------|-------------------------------|------------------|--------| | EC10(ECx) | 72h | Algae or other aquatic plants | >5.14<6.01mg/l | 2 | | EC50 | 72h | Algae or other aquatic plants | >18.39<19.92mg/l | 2 | | EC50 | 48h | Crustacea | 136.9mg/l | 1 | # hydrochloric acid | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------|--------------------|---------|-------------|--------| | EC50(ECx) | 9.33h | Fish | 0.51mg/L | 4 | | LC50 | 96h | Fish | 334.734mg/L | 4 | #### Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data # Ecotoxicity: The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5 Prevent, by any means available, spillage from entering drains or water courses. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-------------------|-------------------------|------------------| | oxalic acid | LOW | LOW | | hydrochloric acid | LOW | LOW | # **Bioaccumulative potential** | Ingredient | Bioaccumulation | |-------------------|------------------------| | oxalic acid | LOW (LogKOW = -1.7365) | | hydrochloric acid | LOW (LogKOW = 0.5392) | # Mobility in soil | Ingredient | Mobility | |-------------------|--------------------| | oxalic acid | HIGH (KOC = 1.895) | | hydrochloric acid | LOW (KOC = 14.3) | # **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal #### **▶** C - ► Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus - Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed. #### **SECTION 14 Transport information** # Labels Required NO 2X | Marine Pollutant | | |------------------|---| | HAZCHEM | Γ | # Land transport (ADG) | UN number | 1760 | | |----------------------------|---|--| | UN proper shipping name | CORROSIVE LIQUID, N.O.S. (contains hydrochloric acid) | | | Transport hazard class(es) | Class 8 Subrisk Not Applicable | | | Packing group | Ш | | | Environmental hazard | Not Applicable | | Version No: 2.2 Page 10 of 11 Issue Date: 11/01/2022 Print Date: 11/01/2022 Print Date: 11/01/2022 **TIMBERCLEAN** #### Air transport (ICAO-IATA / DGR) | UN number | 1760 | | | | |------------------------------|---|----------------|---------|--| | UN proper shipping name | Corrosive liquid, n.o.s. * (contains hydrochloric acid) | | | | | Transport hazard class(es) | ICAO/IATA Class | 8 | | | | | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 8L | | | | Packing group | II . | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions | | A3 A803 | | | | Cargo Only Packing Instructions | | 855 | | | | Cargo Only Maximum Qty / Pack | | 30 L | | | | Passenger and Cargo Packing Instructions | | 851 | | | | Passenger and Cargo Maximum Qty / Pack | | 1 L | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y840 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 0.5 L | | #### Sea transport (IMDG-Code / GGVSee) | UN number | 1760 | | | |------------------------------|--|--|--| | UN proper shipping name | CORROSIVE LIQUID, N.O.S. (contains hydrochloric acid) | | | | Transport hazard class(es) | IMDG Class 8 IMDG Subrisk Not Applicable | | | | Packing group | П | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-A , S-B Special provisions 274 Limited Quantities 1 L | | | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | • | | |--------------------------------------|---------------| | Product name | Group | | oxalic acid | Not Available | | hydrochloric acid | Not Available | | All other substances - non-hazardous | Not Available | # Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------------------------------|---------------| | oxalic acid | Not Available | | hydrochloric acid | Not Available | | All other substances - non-hazardous | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture # oxalic acid is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) # hydrochloric acid is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs Version No: 2.2 Page 11 of 11 Issue Date: 11/01/2022 #### **TIMBERCLEAN** Print Date: 11/01/2022 #### **National Inventory Status** | National Inventory | Status | | |--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | #### **SECTION 16 Other information** | Revision Date | 11/01/2022 | |---------------|------------| | Initial Date | 07/12/2016 | #### **SDS Version Summary** | Version | Date of
Update | Sections Updated | |---------|-------------------|--| | 1.2 | 11/01/2022 | Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Appearance, Chronic Health, Classification, Disposal, Exposure Standard, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), Fire Fighter (fire incompatibility), Ingredients, Personal Protection (Respirator), Physical Properties, Spills (major), Storage (storage incompatibility) | # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV:
Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances